Rho-stimulated contractility drives the formation of stress fibers and focal adhesions
نویسندگان
چکیده
Activated rhoA, a ras-related GTP-binding protein, stimulates the appearance of stress fibers, focal adhesions, and tyrosine phosphorylation in quiescent cells (Ridley, A.J., and A. Hall, 1992. Cell. 70:389-399). The pathway by which rho triggers these events has not been elucidated. Many of the agents that activate rho (e.g., vasopressin, endothelin, lysophosphatidic acid) stimulate the contractility of smooth muscle and other cells. We have investigated whether rho's induction of stress fibers, focal adhesions, and tyrosine phosphorylation is the result of its stimulation of contractility. We demonstrate that stimulation of fibroblasts with lysophosphatidic acid, which activates rho, induces myosin light chain phosphorylation. This precedes the formation of stress fibers and focal adhesions and is accompanied by increased contractility. Inhibition of contractility by several different mechanisms leads to inhibition of rho-induced stress fibers, focal adhesions, and tyrosine phosphorylation. In addition, when contractility is inhibited, integrins disperse from focal adhesions as stress fibers and focal adhesions disassemble. Conversely, upon stimulation of contractility, diffusely distributed integrins are aggregated into focal adhesions. These results suggest that activated rho stimulates contractility, driving the formation of stress fibers and focal adhesions and elevating tyrosine phosphorylation. A model is proposed to account for how contractility could promote these events.
منابع مشابه
RhoJ/TCL regulates endothelial motility and tube formation and modulates actomyosin contractility and focal adhesion numbers.
OBJECTIVE RhoJ/TCL was identified by our group as an endothelial-expressed Rho GTPase. The aim of this study was to determine its tissue distribution, subcellular localization, and function in endothelial migration and tube formation. METHODS AND RESULTS Using in situ hybridization, RhoJ was localized to endothelial cells in a set of normal and cancerous tissues and in the vasculature of mous...
متن کاملThe small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors.
Actin stress fibers are one of the major cytoskeletal structures in fibroblasts and are linked to the plasma membrane at focal adhesions. rho, a ras-related GTP-binding protein, rapidly stimulated stress fiber and focal adhesion formation when microinjected into serum-starved Swiss 3T3 cells. Readdition of serum produced a similar response, detectable within 2 min. This activity was due to a ly...
متن کاملActivation of Rho-kinase and focal adhesion kinase regulates the organization of stress fibers and focal adhesions in the central part of fibroblasts
Specific regulation and activation of focal adhesion kinase (FAK) are thought to be important for focal adhesion formation, and activation of Rho-kinase has been suggested to play a role in determining the effects of FAK on the formation of stress fibers and focal adhesions. To clarify the role of FAK in stress fiber formation and focal adhesion organization, the author examined the formation o...
متن کاملDistinct actions and cooperative roles of ROCK and mDia in Rho small G protein-induced reorganization of the actin cytoskeleton in Madin-Darby canine kidney cells.
Rho, a member of the Rho small G protein family, regulates the formation of stress fibers and focal adhesions in various types of cultured cells. We investigated here the actions of ROCK and mDia, both of which have been identified to be putative downstream target molecules of Rho, in Madin-Darby canine kidney cells. The dominant active mutant of RhoA induced the formation of parallel stress fi...
متن کاملCaldesmon inhibits nonmuscle cell contractility and interferes with the formation of focal adhesions.
Caldesmon is known to inhibit the ATPase activity of actomyosin in a Ca(2+)-calmodulin-regulated manner. Although a nonmuscle isoform of caldesmon is widely expressed, its functional role has not yet been elucidated. We studied the effects of nonmuscle caldesmon on cellular contractility, actin cytoskeletal organization, and the formation of focal adhesions in fibroblasts. Transient transfectio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 133 شماره
صفحات -
تاریخ انتشار 1996